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Abstract. ‘
The sampling theorem states essentially that if the frequency spectrum, :

|

or Fourier transform, g(w) of a time function f(t) vanishes for w outside

some interval I , then f(t) is completely determined by its values at cer- !

tain discrete sampling points, whose density is prumortional to the length of

the interval I . This note gives a method of proof of the sampling theorem,
both for the case where the interval I is centered at the origin and where

it is not, which i1s somewhat simpler than the previously given proofs, and at

the same time is more rigorous, and yields several useful generalizations to

functions of several variables and random functions.

1. Introduction. g
The sampling theorem, as first stated by Shannon [1], asserts ;ssentially

that ir the frequency spe.t.um, or Fourier transform, g(w) of a time function
f(t) vanishes for w outside some interval I , then f(t) is completely
determined by its valuecc .t certain discrete ssmpling points, whose density is
proportional to the length of tae interval. The usual proof of the sampling
theorem is based on expanding the Fourier transform g(w) in a Fourier series.
However, it appears that the result can be obtained more simply by expanding

iwt ; . . .
the kernel e in a Fourier series, as a function of w in I , which

e

amounts to proving the sampling theorem for the functions of t given by

elwt , Wwith w held fixed at some point in I . 1In this note, we use this




method to prove the sampling theorem.

o=

to give simple proofs of various extensions of i{he sampling theorem, among

them those due to Goldman [2], Kohlenberg [3], and Woodward and Davies [L].

The theorems we prove are the following.

Theorem I: Suppose that the function

of t , may be represented as a Fourier integral, for some positive constant W ,

(1.1)

where the function g(w)

Then, for every t ,

(1.2)

where

(1.3)

Theorem II: Suppose that f(tl,..

variables, may be represented as a Fourier integral, for positive W

2nW

2nW .
£(4) =/ et g(w) dw

may contain & functicon terms, but notat w= + 2n1W .

@

fe) = > IR s(t - &)

m=-

2nW .
S(t) = = i °lwt dw
bt ~2nW i

sin 2nWt
2t

1o

.,tK) , defined as a function of X

K

We also show how the method may be used

f(t) , defined for all real values

)

f
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23Wy 2nW, i(wl R )
(1.5) f(tl,. ,tK) = . e o dw, . - du e o (wl,...,wK)
- . - K

where g(wl,...,wx) may contain & function terms, but not at the oK points
of the form (+ 20W 5 sk EnWK) Then
Z‘D moom My 5
1
(1.6) £lty,...,t.) = £z - o s) sty ) - oo s(tpmm)
My ey ==00 1 K K

Theorem III: Let f(t) be a stationary random function (as defined by
Doot [5])) whose covariance (or autocorrelation) function R(t) = Ef(t) £(t+1)

may be written,

2nW i
(1.7) R(7) =f e 6w aw

where G(w) 1s the power spectrum cf the function, which may contain &

function terms, but not at w = + 2x«W . Then
m_
m m
(1.8) Bt) = ) f(E) s(c - )
m=-Q0

where the infinite series in (18) converges stochastically (in the sense of

convergence in mean square).

Theorem IV: Suppose that f(t) may be represented as a Fourier integral,

for positive WO and W ,




“h-

2n(W + W) "-2nW -
(1.9) f£(t) =~/ﬁ ° etwt glw) + © e g(w) dw
J 2nW ~2n(WO+ W) S

where the function g(w) uay possess & function terms, but not at

W=+ 2mW  or w=g% Eﬁ(wo + W) or w=12n(rW - Wo) where r is the

integer such that

WO Wo
(1.10) 2w <r<2+1
Let
1 2n(rW + W )
s(t) = == © dulcos wt + sin wt cot nrWk]
2nW
ano
(1.11)
1 2n(WO+ W)
+ = dwlcos wt + sin wt cot n(r + 1)Wk]
2nW
21r(rw-wo)

where k 1is a constant satisfying the condition that rWk and (r + 1)Wk

are not equal u< any of the integers O, + 1,... Then, for every t ,
)
\ m m m m

(1.12) f(t) = m:“m f(_k—,) s(t - ﬁ) + f(W + k) s(g +k - t)

If wo/w is an integer, then with k = 1/2W , (1.12) reduces to (1.k).
It will be clear from-what follows that Theorems II and III can be

extended in the same way that Theorem I is extended by Thecorem IV.

2. Proofs of Theorems I-1IT.

We start with the following tasic fact from the theory of Fourier

series. For any real number t , and w such that |wl < 2nW ,



— 1w =
lwt _ W m
(2.1) e = § e s(t -~ 2w> .

The infinite series in (2.1) converges in general for |w | < 2nW , but not

~

for w =+ 2«W . However, the consecutive sums

—
Y 2W m
SM(w, ) = > e s(t - 7
|} <
are, for fixed t , uniformly bounded for |w| < 2nW ; thet 1s, there is a
constant K such that ISM(w,t) |<K for M=0,1,2, ... and |u| <2xW .
A not quite .igorous way of verifying (2.1) is as follows. The right

hand side or (2.1) may be written

o0 . m
(2.2) 1 [E 5 1{w-Nzg
\E. m [ e

~2nW M=~00

It may be verified that

@ (o)

(2.3) E ™ _ op > 5(a + 2mn)
PA——

m=-Q0 N=~0
and, for any function f(x) ,
(2.4) J £(x) 5(:2) ax = o 1(a)

I

if th2 point a lies in the interval of integration I ; otherwise the

integral in (2.4) is zero. Now, for le < 27W , the only value of n such

that |w + kmxaW| < 27W is n = O . Consequently, in view of (2.3) and (2.4),




it is seen that the value of (2.2) 1is elwt, for |wl< 2¢W , which verifies

(2.1).
Next, to prove Theorems I and II, merely repiace elyt in (1.1) and

(1.5) by the infinite series of (2.1); that the order of integraticn and summa-

tion may be interchanged follows rigorously by the theory of Lebesgue integra-

tion.

Next, to prove Theorem III, we first note the fact that, from (1.7) if

follows that f(t) may be represented as a stochastic integral as follows:

2nW .
(2.6) £(t) =f 1t az(w)
-2nW

By the theory of stochastic integrals, (1.8) follows from (2.6) if one shows

that

2rW | b 2
lim e - g {w,t)] Glw) d&w =0
M- J-21W

wnich follows from the facts stated at the beginning of this section.

3. Proof of Theorem IV.

To prove (1.12) we begin by conjecturing that for w such that

eni | < lw] < 2n(WO+ W), e1¥t may be written in the form

m

L iw(% + k)
e 52(t - g k)

. m
iw =

. iwt W m

(3.1) e = ;i__ e s, (t - W) + /)

o] m=~C0

for some constant k , and functions sl(t) and 82<t) which are of the




form, for 1i = 1,2,

(3.2) 5, (t) = f et 8, (w) dw .
JI

where the region of integration I consists of the intervals (2nWO,2n(WO+ W))

and (-2n(WO+ W), -2nWO) . In view of (3.2), the right hand side of (2.1)

may be written

i(w-)\)m
s Jos e O
i(w-k)%

) ) <
+ L/f dASE(h) eTAE elk(wnk) / e
I m

We next evaluate (3.3) by means of (2.3) and (2.4).
It is readisy verified that, for w in I, w + 2rnW  lies in I only for
n = 0, and for one other value of n , which we denote by N(w) , whose

values are given in Table A in terms of the integer r given by (1.10).

Table A
For w in the interval N(w) = w + 2xN(w)W 1lies in the
interval
Jl : 2nWo <w< 2n(rW-WO) -r —Jl
-J; :-2n(rW-Wo) <w < -2nW r Iy
Iy 2n(rW-WO) <uw< eﬁ(wo+ W) | -(r+l) -J,
-Jy :-En(Wo+ WY <owc< -23t(rW-WO)1 r+l J2
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Then, for w in I, the value of (3.3) is given by

(3.8) 2 &MY [8)(w) + Sy(w)] + 2w oFE(w + BnNI)

e-lEﬂN(w)WkS

[Sl(w + 2nN(w)W) + w + 2nN(w)W) ]

Al
Now, let Sl(w) and Sz(w) be defined so that they vanish for w
outside I, and for w = + 2n(rw;wo) , and for other values of w in I

satisfy the relations
(3.5) 2nW Sl(u) =1 - 2nW Se(w), 2nW Se(w) = [1-e12"N(°’)Wk]'l

where we now chocse k so that rWk and (r+l1)Wk are not equal to any
of the integers 0, + 1, + 2, ... . 1In view of Table A it may be verified
that the following relations hold for w 1in I, where an asterisk denotes

a complex conjugate:

M) = - M(-w), §(w) = 5, (-v)

Sg(w + 2nN(w)W)

1}
(2]
phd
€
|
n
n
]
£

2
Sl(w + 2nN(w)W) = S{(w) = Sl(-w),
Sl(w + 2nN{w)W) + e_ieﬂl\l(m)Wk 82(w + 2nN(w)W)
- 18y (w) + MO 5 )1 _ o
EnW(Sl(w) + Sg(w)) =1




s
In view of these relations, the value of (3.4) is e for v 1in

I, except perhaps for w = + 2n(rW-WO) , and (3.1) holds with sl(t) and
sg(t) given by (3.2) and Sl(w) and 82(w) given by (3.5).

We now write (3.1) in a more convenient form. Since Sl(w) = 82(-w) 5

’

it follows that sl(t) = 52(-t) . Define s(t) = s,(t) . Then, since
* = S (-
s¥(w) = 5,()
iwt gﬁ(wo+ W) iwt '
(3.6) s(t) = e 5 (w) dw = 2 Real [e™ 'S (w)] dw
1 1
I +2nW
Now
iwt 1 lcos wt -~ cos (wt + 2nN(w)Wk) é
(3-7) 2 Real [¢777 5,(w)] = zm 1 < cos 2nN{w )Wk
) i
!
'l j
= 547 | o8 wt + sin wt cot nN(w)Wk |
- i
iwt i
Thus (1.12) has been established for the complex exponentials e for :

2 < lw| < 2n(Wo+ W) , with the possible exception of w = + En(rw-wo)

To establish (1.12) for any function f(t) satisfying (1.9), merely re-

place et in (1.9) by the infinite series representing it.




1]
(2]
[3]
(4]
(5]

c.
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i ;kigA Mathematical Resta . et of Hypobtheses in
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/3 | d) f "A SIMPLE PROOF AND SOMT EXTENSIONUS
!’ OF THE SAMPLING THEOREM"}/

Tyvr
‘)J

Emanuel Parzen

This report was written in = terminology which would presumably be
most readable to communication engineers. For the reader interested
in mathematical precision, the following restatements of hypothesas
should bhe notad.

In Theorem I, for (7.1) read

2+ H ot
(1.1) £) = st gue )
-2 K
where V(. ) is a function of bhounded variation contimious at « = 32 W.

In Theorem II, for (1.5) read

v L DT .
oy ,LWWK l(wltl""’“ktK)
ol dV(‘Ul, IR

3

)

whare V{ew., ..., uﬁ,) is a functicon of bounded variation which assigns
b
measure zarc to the set E( Wayeesy ) 3w, = 227W, for some i f.
1’ > 7K i i

In Theorer: III, for (1.7) read

2t W Pl
(1.7) R(T) = // e dF (e )
—2mW

T/ ™

= Technical Report No. 7, Dzpartment of Statistics,’Stanford .
University, Stanford, California. Prepared under Office of Naval
Qasearch Contract Nonr-225(21).
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where the spectral distribution function F(« } is monotous ‘nun-cecreasing
and continuous at «w = 227V,
In Theorem IV, for (1.9) read
2w (W W) =2

(1.9)  £(¢) f o et tau(e) . [0 et gy

oy 27 (Y ”
21rwo 2 (VO" N

where V(w ) is a function of bounded variation continuous at

W= 32’H‘WO, w = 2T (WO*W), and « = 27 (W - WO), where r is defined

by (1.20).




